Attachment E. Ecosystem Process Definition Tables Each ecosystem process is described in terms of delivery, movement and loss to an ecosystem in both unaltered and altered conditions. Each of these aspects of the process is further broken up into components. For example, overland flow, shallow subsurface flow, and discharge are all different components of movement within the hydrologic cycle. The next sections of the tables describe the major natural controls of the process and the key areas where the process interacts with the landscape. For example, the key areas for large woody debris (LWD) delivery to aquatic areas are generally located adjacent to the aquatic area and become less important the further away from the shoreline one gets. So, while windthrow may be an important natural control of delivering trees to the ground over an entire watershed, it is only important for this analysis where it is close to an aquatic area, because this analysis is not concerned with how LWD interacts with upland areas for wildlife habitat, as it is outside of SMA jurisdiction. The next section of the table describes the alterations to the process, the cause/s for that alteration, and indicators that can be used in a GIS analysis to represent those alterations. For example, an alteration to the delivery of LWD can be caused by a lack of trees adjacent to aquatic areas. Non-forested landcover data adjacent to aquatic areas can be used as the indicator to evaluate if that alteration has happened or not. Some changes were made to Stanley et al (2005) in order to clarify the intent. For example, "straight-line hydrography" was changed to "channelized streams and rivers". Many references to a single shoreline type (stream) were removed and changed to shoreline, since the process is occurring along all shoreline types (marine, stream and lake). In some cases, additional causes of change and indicators were added to the table. Any such additions are explained with scientific references. The newly added processes of light energy, wave energy, and tidal influences are described in the same format with references. | Hyd | Hydrologic Component of process | | | | | | | |----------|---------------------------------|--|---------------------------------------|--|---|---|---| | Comp | onent o | of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | | Dalin | Delivery | | patterns amounts of precipitation | | Altered runoff | Climate change | | | Deliv | | | Timing of snowmelt | Rain-on-snow
zones
Snow dominated
zones | Increase streamflow | Removal of forest
vegetation in rain-
on-snow zones | Non-forested vegetation in rain-on-snow zones | | | | Overland flow Precipitation patterns Soils Surface storage Topography Surficial geology Soils Areas of low gradient floodplains | patterns | Saturated areas | Change timing, type
and routing of
flows to saturated
areas | Land cover alteration, | Watershed imperviousness Stormwater discharge pipes Drainage ditches in seasonally saturated areas Loss of seasonally saturated areas | | Movement | Movement
At the surface | | Increase streamflow Decrease storage | Drainage or filling of
depressional
wetlands | Loss of depressional wetland area Straight-line hydrography in depressional wetlands | | | | | | | capacity Increase water | Channelization of streams | Straight-line hydrography of stream reaches with floodplains | | | | | | | | | transport capacity | Disconnection of
stream from
floodplain | Dikes and levees on stream reaches with floodplains | | | | | | T | 1 | 1 | | |-----------|---------------|--------------------------------------|------------------------------------|---|---|---|---| | | | | | | Increase water storage capacity Decrease downstream flow | Dam operation | Dams | | | | Shallow subsurface flow | | Areas on geologic deposits with low permeability | | Removal or compaction of soil | New construction | | | | | | Areas on geologic deposits with high permeability | Convert to surface runoff | Impervious surfaces | Land uses with impervious cover on geologic deposits of low permeability | | pe | | | | Entire watershed | | Removal of forest cover | Non-forested vegetation on geologic deposits of low permeability | | continued | Below surface | Recharge | Topography harge Surficial geology | Areas on geologic deposits with low permeability | Convert to surface runoff | Removal of forest cover | Non-forested vegetation on geologic deposits of moderate to high permeability | | Movement | Belov | | | Areas on geologic deposits with high permeability | Reduce groundwater recharge | Impervious surfaces | Land uses with impervious cover on areas of moderate to high permeability | | | | | | Entire watershed | Shift location of groundwater recharge Losses from supply pipes of sewer lines, or septic drainfields | Leaky pipes or irrigation canals Water supply and wastewater management | Utility lines Septic systems Unlined irrigation canals | | | | Vertical and lateral subsurface flow | Topography Surficial geology | Areas on geologic deposits with low permeability | Decrease quantity of groundwater available for | Groundwater pumping | Drawdown patterns Baseflow trends | | | | | T | | 1 | | | |------|-------------------|-------------------------------------|---------------------------------|--|--|---|---| | | | | | Areas on geologic deposits with high permeability | | | | | | | | | Entire watershed | Change location of groundwater discharge | Interception of sub-
surface flow by
ditches and roads | Constantly wet road ditches | | | | Sub-surface storage | Surficial geology | Deep permeable geologic deposits | Decrease quantity of groundwater available for discharge | Groundwater pumping | Well locations and volumes | | | Return to surface | Discharge | Topography
Surficial geology | Slope breaks (steep above gentle below) Stratigraphic pinchouts Contact area between geologic deposits of different permeabilities | Decrease groundwater inputs to aquatic resources | Drainage of discharge
wetlands | Loss of area of
groundwater discharge
wetlands
Straight-line hydrography
in groundwater discharge
wetlands | | | | Evaporation | Climate | Entire watershed | Alter evaporation rates | Change temperature and precipitation patterns | | | | | Transpiration | Vegetation
Climate | Entire watershed | Alter
evapotranspiration
rates | Clearing vegetation Shifting vegetation composition | Land cover | | Loss | | Streamflow out of basin | Topography | Entire watershed | Change streamflow direction | Diversions
Interbasin transfers | Diversion structures | | | | Groundwater
flow out of
basin | Topography
Geology | Entire watershed | Altering quantity and pattern of groundwater flow | Interbasin transfers Groundwater pumping Impervious surfaces Interception of sub- surface flows | Baseflow trends Well locations, pumping rates and volumes | Wave Energy | Component of p | rocess | Major natural | Key Areas | Change to process | Cause of change | Indicators of change | |-----------------|--------|-------------------|--|---|---|--| | Component of pr | 10003 | controls | Ney Meas | change to process | Cause of change | indicators of change | | Delivery | | Beach slope Fetch | Shoreline areas with water bodies large enough to have wind generated waves. | Increase in number of waves reaching the shoreline | Boat wakes | Shorelines adjacent to major shipping/transit lanes Shorelines experiencing high recreational boat traffic. (i.e. near marinas) | | | | | | Increase in wave energy reaching the shoreline | Loss of eelgrass | Areas where eelgrass is
known to have been
previously present
(note data doesn't
exist) | | | | | | Reduction in wave energy reaching the shoreline. | Anthropogenic
structures in deeper
water | Breakwaters Docks and piers | | Movement | | | | Wave energy unable to dissipate naturally on the beach. | Armoring causes energy to be reflected back onto beach, causing scour, and change in sediments. | Armored shorelines,
especially at or below
OHWM | LWD ## **Attachment E3** | Component | of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |-----------|-------------------------------------|--|--|---|--|--| | Delivery | Streambank/
shoreline
erosion | Water energy
Riparian vegetation
Erodibility of soils
Tidal Height (marine
only) | Unconfined channels
Non-accretion
shoreform beaches
(marine only) | Reduce bank undercutting | Channelization of streams Reduction of flow (diversions/dams) Armoring of shoreline | Dikes and levees Straightline hydrography on unconfined channels Shoreline armoring | | | | | | Reduce LWD
available to reach
shoreline | Remove riparian vegetation | Non-native land
cover adjacent to
stream (impervious
surface, agriculture
practices, | | | Mass wasting | Topography | Mass wasting areas
that are likely to
deliver debris to
shoreline | Reduce LWD
available to reach
shoreline | Remove forest
vegetation on high
mass wasting hazard
areas | Non-forested land
cover on high mass
wasting hazard areas | | | Windthrow | Riparian vegetation
Weather patterns | 100 ft from aquatic resource | Reduce LWD
available to reach
shoreline | Removal of vegetation adjacent to shoreline | Non-forested land cover within 100' of shoreline | | Movement | Storage | Transport capacity of water | Channels with <4% slope Accretion shoreforms (marine only) | Reduce capacity of shoreline to store wood | Channelization of streams Armoring of shoreline (especially below OHW) Increased streamflow ¹ | Dikes and levees (armoring) Straightline hydrography on unconfined channels | | Loss | Breakage/
Decomposition | Biotic interactions | | | People pulling it out | Streamside housing
Docks and boat
ramps Public access? | ¹ Addressed in delivery, movement, and loss of hydrologic cycle. ____ Light | Component of | process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |--------------|---------|---|-----------|--|---|--| | Delivery | | Riparian vegetation Topography Climate patterns | | Additional natural light reaching the shoreline | Clearing of shoreline vegetation | No overhanging vegetation No shoreline vegetation | | | | | | Light reaching the shoreline when it should be dark. | Night time lighting
for human use OR
human development
along the shoreline | Streets within 100 feet of shoreline Houses within 100 feet of shoreline Docks and piers | | Movement | | | | | | | | Loss | | Water Topography Climate patterns | | Reduced water depth at which light can | Human structures causing shade | Docks and piers over
the water Buildings within 50 feet of shoreline | | | | | | penetrate | Decrease in water clarity | Increase in nutrients
(which increase other
plant growth) | Phosphorus | Component | of process | Major natural | Key Areas | Change to | Cause of change | Indicators of change | |-----------|---------------------------------------|--|---|--|--|---| | - | • | controls | _ | process | | | | Delivery | DI I | CII. | | Additional sources | Application of fertilizer | Urban land use/ impervious
surface
Agricultural land use | | | Phosphorus sources | Climate patterns
Surficial geology | | | Application of manure Septic systems | Agricultural land use adjacent to dairies Rural residential landuse | | | | | | | septie systems | Testal Testacital landase | | | Surface erosion | Hydrologic regime Soil erodibility | Steep slopes with highly erodible fine soils | | | | | Movement | Biotic uptake
and
decomposition | Biotic cover and composition Hydrologic regime | | | | | | | Adsorption (P) | Soil characteristics | Depressional wetlands with
mineral soils
Upland areas, with clay
soils adjacent to
aquatic ecosystems | Reduced
phosphorus
adsorption | Draining or filling of
depressional
wetlands with
mineral soils | Straight-line hydrography in depressional wetlands with mineral soils Loss of area of depressional wetlands with mineral soils | | | | | | | Loss of upland areas with clay soils | Urban land cover in areas of clay soils adjacent to aquatic ecosystems | | | Sedimentation ¹ | Water transport
capacity
(velocity) | Depressional wetlands,
lakes, floodplains,
depositional channels | Reduced
storage of
phosphorous
& toxins | See Sediment table | See sediment table. | | Loss | Export out of the basin | Hydrologic regime | | | | | Nitrogen | Component | of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |-----------|---------------------------------------|--|---|---|--|--| | Delivery | Nitrogen
sources | Weather patterns Biotic composition | | Additional sources | Application of fertilizer Application of manure Sewer discharge Septic systems | Agricultural landuse Residential landuse Agricultural landuse Sewer outfalls Rural residential landuse | | | Biotic uptake
and
decomposition | Biotic cover and composition Hydrologic regime | Headwater
streams | Increase stream discharge and depth | Channelization of headwater streams | Straight-line hydrography in headwater streams | | Movement | Nitrification | Hydrologic regime | All depressional wetlands (excluding bogs and fens) | Reduced area with seasonal flooding | Draining or filling of depressional wetlands | Straight-line hydrography in depressional wetlands Loss of area of depressional wetlands | | | Adsorption | Hydrologic regime | Headwater
Streams | Increase stream discharge and depth | Channelization of headwater streams | Straight-line hydrography in headwater streams | | | Denitrification | Hydrologic regime | All depressional wetlands (excluding acidic wetlands) | reduced area for denitrification | Draining or filling of depressional wetlands | Straight-line hydrography in depressional wetlands Loss of area of depressional wetlands | | Loss | | Surficial geology | Riparian areas
with a
consistent
supply of
shallow
groundwater | Loss of hydrologic
connectivity between
upland and riparian
area | Interception of
shallow
groundwater
flow into riparian
areas | | | | Volatilization | Bacterial activity Quantity of organic matter | | | | | # Pathogens #### **Attachment E7** | Component | of process | | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |-----------|--|-----------------------------------|---|---|--|--|---| | Delivery | Fecal inputs | | 1 | Additional fecal inputs | Failed septic systems Discharge of untreated human and animal waste | Rural residential land use | | | Movement | | Overland flow | Precipitation patterns Soils | Seasonally saturated soils | Channelized flow | Ditching & draining of saturated areas | | | | Transport | Surface
flows | Topography Surficial geology Soils | Streams, rivers
and connected
wetlands | Increased velocity
and erosion of
streambed | Channelization of streams | Straight-line
hydrography | | | | Subsurface
flows &
Recharge | Topography
Surficial
geology | Low permeability
geologic deposits
High permeability
geologic deposits | Conversion to surface flows | Impervious cover Ditching in areas of low permeability | Urban land cover
and/or impervious
cover
Ditching on
geologic deposits
of low permeability | | | Adsorption Sedimentation ² | | Mineral and
organic soils
Surface water
velocity | All depressional wetlands. | Reduce storage of pathogens | Ditching, draining or
filling depression
wetlands with
mineral and organic
soils | Loss of area of
depressional
wetlands
Straight-line
hydrography in all
depressional | | Loss | Death | | UV radiation
Starvation
Predation | All depressional wetlands | Reduce residence time | Draining or filling of depressional wetlands with mineral and/or organic soils | wetlands Loss of area of depressional wetlands. | ¹Addressed in delivery, movement, and loss of water; conversion of sub-surface flow to surface runoff. ² Addressed in delivery, movement, and loss of sediment Toxins | Component | of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |-----------|--|---|--|---------------------------------|---|--| | Delivery | Toxin sources | Climate patterns
Surficial geology | | Additional sources New toxins | Use of pesticides,
herbicides, and other
chemicals | Urban land use/ impervious surface Row crop land use Roads Marinas, docks, piers, creosote Bulkheading, Sewer discharges | | | Surface erosion | Hydrologic
regime
Soil erodibility | Steep slopes with highly erodible fine soils | | | | | Movement | Biotic uptake
and
decomposition | Biotic cover and composition Hydrologic regime | | | | | | | Adsorption (T) | Soil cation exchange capacity | Depressional wetlands with organic or clay soils | Reduced toxin adsorption | Draining or filling of wetlands with organic and clay soils | Straight-line hydrography in wetlands with organic or clay soils Loss of area of wetlands with organic or clay soils | | | Sedimentation ¹
Export out of
the basin | Water transport
capacity
(velocity)
Hydrologic
regime | Depressional wetlands,
lakes, floodplains,
depositional channels | Reduced
storage of
toxins | See Sediment table | See sediment table. | | Loss | Export out of the basin | Hydrologic regime | | | | | | Tidal influences | | Attachment E9 | | | | | | | |----------------------|--|------------------------------------|---|---|--|--|--|--| | Component of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | | | | | Delivery | Climate patterns Season Phase of the moon. | | Decrease in tidal range | Diversion of streams/rivers | Modified drainage networks | | | | | | slope | | Increase in tidal
range or upland shift
in tidal height | El Nino events
Sea Level Rise | Shorelines adjacent to major shipping lanes Shorelines at beaches that experience substantial small boat traffic. | | | | | Loss | Slope of shoreline | Shorelines exposed to tidal forces | Reduction in tidal range | Filling of the intertidal zone (below OHWM) | Armored shoreline below OHWM | | | | Sediment | Component | of process | Major natural controls | Key Areas | Change to process | Cause of change | Indicators of change | |-----------|---|--|--|---|-------------------------------|---| | Delivery | | Topography Soil erodibility Vegetative cover Wave energy | Steep slopes with erodible soils Feeder Bluffs, Feeder bluff exceptional, potential Feeder Bluffs (marine only) | | Removal of vegetation | Non-forested land
cover on highly
erodible slopes
adjacent to aquatic
resources | | | Surface
erosion | | | Increase delivery of fine sediment to aquatic resources | Soil disturbance and clearing | New construction draining to aquatic resources Row crop agriculture draining directly to aquatic resources | | | | | | | Roads increasing | Roads within 200' | | | | | | | stream network | of aquatic resources | | | | | | Decrease delivery of sediment to shoreline | Armored shoreline | Bulkheads, levees, dikes, etc. | | | Mass wasting | Topography | Hazard areas for shallow rapid landslides | Increase delivery of sediment to aquatic resources | Roads triggering landslides | Roads in high mass
wasting hazard
areas | | | | | | | Removal of vegetation | Non-forested land
cover on high mass
wasting hazard
areas | | | Shoreline
erosion (lakes/
marine) | Wave energy Tidal regime Riparian vegetation | All marine/ lake shorelines | Sediment along shore is impounded by | Bulkheading/armoring | Armored shorelines | | | In-channel erosion (streams only) | Transport capacity (velocity) Riparian vegetation | Unconfined channels | Alter fine sediment delivery to streams | Channelization of streams | Straight-line
hydrography in
unconfined
channels | | | | | | | Increase in stream discharge | Urban land cover | |----------|---------------|-------------------------------|---|--|---|--| | Movement | Sedimentation | Transport capacity (velocity) | Depressional wetlands
Floodplains and
depositional channels
Lakes
Marine shorelines | Decrease sediment storage | Drainage or filling of depressional wetlands | Loss of area of depressional wetlands Straight-line hydrography in depressional wetlands | | | | | | | Channelization of
stream reaches with
floodplains or that are
depositional zones | Straight-line
hydrography on
stream reaches with
floodplains or
depositional
channels | | | | | | | Disconnection of streams from floodplains Increase streamflow ¹ | Dikes and levees on
stream reaches with
floodplains | | | | | | Increase sediment storage | Dams | Dams | | | | | | Modify sediment
transport (increase
updrift and a decrease
downdrift) (marine
only | Structures in the intertidal zone | Groins Bulkheads below OHWM Docks/piers | | Loss | | Transport capacity (velocity) | Use local data | Decrease or increase in sediment storage | Same causes for movement | Use local data |